1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
#include <functional> #include <algorithm> #include <iostream> #include <numeric> #include <vector> #include <cmath> #include <queue> #include <array> #include <map> #include <iomanip>
using i64 = long long; constexpr double eps = 1e-9;
template<typename T> int sgn(T x) { return x < -eps ? -1 : x > eps; }
template<typename T> struct Point { T x, y;
template<class Y> Point(const Point<Y>& cp):x(cp.x), y(cp.y) {}
Point() : x(0), y(0) {}
Point(T _x, T _y) : x(_x), y(_y) {}
friend std::istream& operator >>(std::istream& is, Point& rhs) { return is >> rhs.x >> rhs.y; }
friend std::ostream& operator <<(std::ostream& os, const Point& rhs) { return os << '(' << rhs.x << ',' << rhs.y << ')'; }
Point operator -(const Point& rhs) const { return {x - rhs.x, y - rhs.y}; }
Point& operator -=(const Point& rhs) { return (*this) = (*this) - rhs; }
Point operator +(const Point& rhs) const { return {x + rhs.x, y + rhs.y}; }
Point& operator +=(const Point& rhs) { return (*this) = (*this) + rhs; }
template<class Y> Point<double> operator *(const Y& rhs) const { return {x * rhs, y * rhs}; }
template<class Y> Point<double> operator /(const Y& rhs) { return {x / rhs, y / rhs}; }
friend double abs(const Point& lhs) { return std::sqrt(lhs.x * lhs.x + lhs.y * lhs.y); }
friend i64 abs2(const Point& lhs) { return (lhs.x * lhs.x + lhs.y * lhs.y); }
friend T cross(const Point& lhs, const Point& rhs) { return lhs.x * rhs.y - lhs.y * rhs.x; }
friend T dot(const Point& lhs, const Point& rhs) { return lhs.x * rhs.x + lhs.y * rhs.y; }
friend double angle(const Point& rhs) { return atan2(rhs.x, rhs.y); }
Point rotate90() const { return {y, x}; }
Point<long double> rotate(double deg) { return {x * cos(deg) - y * sin(deg), x * sin(deg) + y * cos(deg)}; }
bool operator <(const Point& rhs) const { return sgn(x - rhs.x) == 0 ? sgn(y - rhs.y) < 0 : sgn(x - rhs.x) < 0; }
bool operator ==(const Point& rhs) const { return sgn(x - rhs.x) == 0 && sgn(y - rhs.y) == 0; }
bool up() const { return sgn(y) == 0 ? sgn(x) >= 0 : sgn(y) > 0; } };
using Pl = Point<i64>; using Pd = Point<long double>;
template<typename T> struct Line { Point<T> a, v;
Line(const Point<T>& a, const Point<T>& b) : a(a), v(b - a) {}
template<class Y> Line(const Point<Y>& cp) : a(cp.a), v(cp.v) {}
Pd point(double t) { return a + v * t; }
friend Point<long double> intersection(const Line<T> lhs, const Line<T> rhs) { long double t = (long double) cross(rhs.a - lhs.a, rhs.v) / cross(lhs.v, rhs.v); return lhs.v * t + Point<double>(lhs.a); }
double dis(const Point<T>& rhs) { return std::abs(cross(rhs - a, v)) / v.abs(); }
Line rotate(double deg) { Line<long double> ans(*this); ans.v = Rotate(v, deg); return ans; } };
bool isCross(Pd a, Pd b, Pd i, Pd j) { return sgn(cross(i - a, j - i)) * sgn(cross(i - b, j - i)) == -1 && sgn(cross(b - i, a - b)) * sgn(cross(b - j, a - b)) == -1; }
bool onSeg(Pd a, Pd i, Pd j) { return sgn(cross(i - a, j - a)) == 0 && sgn(dot(a - i, a - j)) < 0; }
std::vector<Pd> ConvexHull(std::vector<Pd> points) { std::sort(points.begin(), points.end()); points.erase(std::unique(points.begin(), points.end()), points.end());
int n = points.size(); std::deque<Pd> dq;
for (auto& point: points) { while (dq.size() > 1 && sgn(cross(dq[dq.size() - 1] - dq[dq.size() - 2], point - dq[dq.size() - 2])) <= 0)dq.pop_back(); dq.push_back(point); }
int k = int(dq.size()); for (int i = n - 1; i >= 0; i--) { while (dq.size() > k && sgn(cross(dq[dq.size() - 1] - dq[dq.size() - 2], points[i] - dq[dq.size() - 2])) <= 0)dq.pop_back(); dq.push_back(points[i]); }
std::vector<Pd> ans(dq.begin(), dq.end()); return ans; }
int dx[] = {1, 1, -1, -1}; int dy[] = {1, -1, 1, -1};
int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout.tie(nullptr);
int n; std::cin >> n; long double a, b, r; std::cin >> b >> a >> r; a /= 2, b /= 2; a -= r, b -= r;
std::vector<Pd> points; for (int i = 0; i < n; ++i) { long double x, y, theta; std::cin >> x >> y >> theta; Pd center(x, y); for (int j = 0; j < 4; ++j) { Pd dxy = {a * dx[j], b * dy[j]}; points.push_back(center + dxy.rotate(theta)); } }
auto rem = ConvexHull(points); long double ans = 0; for (int i = 1; i < rem.size(); ++i) { ans += abs(rem[i] - rem[i - 1]); }
ans += 2 * r * acos(-1);
std::cout << std::fixed << std::setprecision(2) << ans << '\n'; return 0; }
|