1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
#include <functional> #include <algorithm> #include <iostream> #include <numeric> #include <vector> #include <cmath> #include <queue> #include <array> #include <map>
using i64 = long long; constexpr double eps = 1e-6;
int sgn(double x) { return x < -eps ? -1 : x > eps; }
int sgn(i64 x) { return x < 0 ? -1 : x > 0; }
template<typename T> struct Point { T x, y;
template<class Y> Point(const Point<Y>& cp):x(cp.x), y(cp.y) {}
Point() : x(0), y(0) {}
Point(T _x, T _y) : x(_x), y(_y) {}
friend std::istream& operator >>(std::istream& is, Point& rhs) { return is >> rhs.x >> rhs.y; }
friend std::ostream& operator <<(std::ostream& os, const Point& rhs) { return os << '(' << rhs.x << ',' << rhs.y << ')'; }
Point operator -(const Point& rhs) const { return {x - rhs.x, y - rhs.y}; }
Point& operator -=(const Point& rhs) { return (*this) = (*this) - rhs; }
Point operator +(const Point& rhs) const { return {x + rhs.x, y + rhs.y}; }
Point& operator +=(const Point& rhs) { return (*this) = (*this) + rhs; }
template<class Y> Point<double> operator *(const Y& rhs) const { return {x * rhs, y * rhs}; }
template<class Y> Point<double> operator /(const Y& rhs) { return {x / rhs, y / rhs}; }
friend double abs(const Point& lhs) { return std::sqrt(lhs.x * lhs.x + lhs.y * lhs.y); }
friend i64 abs2(const Point& lhs) { return (lhs.x * lhs.x + lhs.y * lhs.y); }
friend T cross(const Point& lhs, const Point& rhs) { return lhs.x * rhs.y - lhs.y * rhs.x; }
friend T dot(const Point& lhs, const Point& rhs) { return lhs.x * rhs.x + lhs.y * rhs.y; }
friend double angle(const Point& rhs) { return atan2(rhs.x, rhs.y); }
Point rotate90() const { return {y, x}; }
Point<double> rotate(double deg) { return {x * cos(deg) - y * sin(deg), x * sin(deg) + y * cos(deg)}; }
bool operator <(const Point& rhs) const { return sgn(x - rhs.x) == 0 ? sgn(y - rhs.y) < 0 : sgn(x - rhs.x) < 0; }
bool operator ==(const Point& rhs) const { return sgn(x - rhs.x) == 0 && sgn(y - rhs.y) == 0; }
bool up() const { return sgn(y) == 0 ? sgn(x) >= 0 : sgn(y) > 0; } };
using Pl = Point<i64>;
std::vector<Pl> ConvexHull(std::vector<Pl> points) { int n = points.size(); std::sort(points.begin(), points.end()); for (auto x: points)std::cout << x << '\n'; std::deque<Pl> dq;
for (auto& point: points) { while (dq.size() > 1 && sgn(cross(dq[dq.size() - 1] - dq[dq.size() - 2], point - dq[dq.size() - 2])) < 0)dq.pop_back(); dq.push_back(point); } for (auto x: dq)std::cerr << x << '\n';
int k = int(dq.size()); for (int i = n - 1; i >= 0; i--) { while (dq.size() > k && sgn(cross(dq[dq.size() - 1] - dq[dq.size() - 2], points[i] - dq[dq.size() - 2])) < 0)dq.pop_back(); dq.push_back(points[i]); }
std::vector<Pl> ans(dq.begin(), dq.end()); return ans; }
int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout.tie(nullptr);
int n; std::cin >> n; std::vector<Pl> points(n); for (int i = 0; i < n; ++i)std::cin >> points[i];
std::vector<std::pair<int, int>> e; for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { if (i == j)continue; e.emplace_back(i, j); } }
std::sort(e.begin(), e.end(), [&](auto x, auto y) { Pl v1 = points[x.first] - points[x.second]; Pl v2 = points[y.first] - points[y.second]; return v1.up() ^ v2.up() ? v1.up() > v2.up() : cross(v1, v2) < 0; });
int ans = 0;
for (int i = 0; i < n; ++i) {
std::vector<int> dp(n, -0x3f3f3f3f); dp[i] = 0; for (auto [l, r]: e) { dp[r] = std::max(dp[r], dp[l] + 1);
}
ans = std::max(ans, dp[i]); }
std::cout << ans << '\n';
return 0; }
|