1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
#include <functional> #include <algorithm> #include <iostream> #include <numeric> #include <vector> #include <cmath> #include <queue> #include <array> #include <map> #include <iomanip>
using i64 = long long;
constexpr double eps = 1e-6;
template<typename T> int sgn(T x) { return std::abs(x) < eps ? 0 : x < 0 ? -1 : 1; }
template<typename T> struct Point { T x, y;
Point(T x, T y) : x(x), y(y) {}
template<class Y> Point(const Point<Y>& cp):x(cp.x), y(cp.y) {}
Point() : x(0), y(0) {}
friend std::istream& operator >>(std::istream& is, Point& rhs) { return is >> rhs.x >> rhs.y; }
friend std::ostream& operator <<(std::ostream& os, const Point& rhs) { return os << rhs.x << ' ' << rhs.y; }
Point& operator +=(const Point& rhs) { x += rhs.x; y += rhs.y; return *this; }
Point operator +(const Point& rhs) const { Point ans(*this); return ans += rhs; }
Point& operator -=(const Point& rhs) { x -= rhs.x; y -= rhs.y; return *this; }
Point operator -(const Point& rhs) const { Point ans(*this); return ans -= rhs; }
template<class Y> Point<Y> operator *(const Y& rhs) const { return Point<Y>(x * rhs, y * rhs); }
template<class Y> Point<Y> operator /(const Y& rhs) { return Point<Y>(x / rhs, y / rhs); }
Point rotate90() const { return {y, x}; }
Point<double> rotate(double deg) { return {x * cos(deg) - y * sin(deg), x * sin(deg) + y * cos(deg)}; }
friend double abs(const Point& lhs) { return std::sqrt(lhs.x * lhs.x + lhs.y * lhs.y); }
friend T cross(const Point& lhs, const Point& rhs) { return lhs.x * rhs.y - lhs.y * rhs.x; }
friend T dot(const Point& lhs, const Point& rhs) { return lhs.x * rhs.x + lhs.y * rhs.y; }
bool operator <(const Point& rhs) const { return x == rhs.x ? y < rhs.y : x < rhs.x; }
friend double angle(const Point& rhs) { return atan2(rhs.x, rhs.y); }
bool operator ==(const Point& rhs) const { return std::abs(x - rhs.x) <= eps && std::abs(y - rhs.y) <= eps; } };
template<typename T> Point<long double> Rotate(Point<T> a, double deg) { return {a.x * cos(deg) - a.y * sin(deg), a.x * sin(deg) + a.y * cos(deg)}; }
using Pl = Point<i64>; using Pd = Point<double>;
template<typename T> struct Line { Point<T> a, v;
Line(const Point<T>& a, const Point<T>& b) : a(a), v(b - a) {}
template<class Y> Line(const Point<Y>& cp) : a(cp.a), v(cp.v) {}
Pd point(double t) { return a + v * t; }
friend Point<long double> intersection(const Line<T> lhs, const Line<T> rhs) { long double t = (long double) cross(rhs.a - lhs.a, rhs.v) / cross(lhs.v, rhs.v); return lhs.v * t + Point<double>(lhs.a); }
double dis(const Point<T>& rhs) { return std::abs(cross(rhs - a, v)) / v.abs(); }
Line rotate(double deg) { Line<long double> ans(*this); ans.v = Rotate(v, deg); return ans; } };
using Ll = Line<i64>; using Ld = Line<double>;
bool isCross(Pd a, Pd b, Pd i, Pd j) { return sgn(cross(i - a, j - i)) * sgn(cross(i - b, j - i)) == -1 && sgn(cross(b - i, a - b)) * sgn(cross(b - j, a - b)) == -1; }
bool onSeg(Pd a, Pd i, Pd j) { return sgn(cross(i - a, j - a)) == 0 && sgn(dot(a - i, a - j)) < 0; }
std::vector<Pl> ConvexHull(std::vector<Pl> points) { int n = points.size(); std::sort(points.begin(), points.end()); std::deque<Pl> dq;
for (auto& point: points) { while (dq.size() > 1 && sgn(cross(dq[dq.size() - 1] - dq[dq.size() - 2], point - dq[dq.size() - 2])) <= 0)dq.pop_back(); dq.push_back(point); }
int k = int(dq.size()); for (int i = n - 1; i >= 0; i--) { while (dq.size() > k && sgn(cross(dq[dq.size() - 1] - dq[dq.size() - 2], points[i] - dq[dq.size() - 2])) <= 0)dq.pop_back(); dq.push_back(points[i]); }
std::vector<Pl> ans(dq.begin(), dq.end()); return ans; }
std::array<i64, 3> getNorm(Ll l) { return {l.v.y, -l.v.x, -l.a.x * l.v.y + l.v.x * l.a.y}; }
void sol() { int n; std::cin >> n; std::vector<Pl> points(n); for (int i = 0; i < n; ++i)std::cin >> points[i]; i64 sumX = 0, sumY = 0; for (int i = 0; i < n; ++i) { sumX += points[i].x; sumY += points[i].y; }
if (n > 1) { std::vector<Pl> hull = ConvexHull(points);
double ans = 2e18; int m = hull.size(); for (int i = 1; i < m; ++i) {
Ll line(hull[i - 1], hull[i]); auto coefficient = getNorm(line); double fm = abs(Pl(coefficient[0], coefficient[1]));
i64 fz = std::abs(coefficient[0] * sumX + coefficient[1] * sumY + n * coefficient[2]); ans = std::min(ans, fz / fm); }
std::cout << std::fixed << std::setprecision(3) << ans / n << '\n'; } else std::cout << "0.000\n"; }
int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout.tie(nullptr); int t; std::cin >> t; for (int cas = 1; cas <= t; ++cas) { std::cout << "Case #" << cas << ": "; sol(); } return 0; }
|